7.17
First I solved it graphically and I can approximate the root to 2.55
Matlab:
x = (-8:0.0001:6);
f_x = @(x) x.^3 + 3.5*x.^2 -40;
plot(x,f_x(x));
Then I solved it using the function fzero in Matlab with the result of 2.5676
Matlab:
Matlab:
x = fzero(inline('x.^3 + 3.5*x.^2 -40'),3)
I used Wolfram Alpha to calculate the roots for the first part of the equation:
Then I plugged the roots in and got this equation:
8.9

The First thing I did was rearrange the equation to this:
Then I used the zero function in Matlab to solve the equation and I got: 2.9449
Matlab:
x = fzero(inline('(pi*h.^3)/3 - pi*(h.^2)*(1) + (0.5)'),3)
8.14
Matlab:
%Modified Secant Method
P = (0:0.1:20000);
l_k = 50;
Delta = 250;
eck = 0.4;
E = 200000;
lk = 50;
f_x = @(P) (Delta)./(1+((eck)*sec(0.5*sqrt(P/(E))*l_k)));
plot(P,f_x(P));
for iter = 1:3
sol(iter) = P-(Delta*P*f_x(P))/(f_x(P+Delta*P)-f_x(P));
Delta = P;
P = sol(iter);
end
sol()
8.17
8.46
No comments:
Post a Comment